**Z** 04



# 中华人民共和国国家标准

**GB/T** 3840 — 1991

# 制定地方大气污染物排放标准的技术方法

Technical methods for making local emission standards of air pollutants

1991 - 08 - 31 发布

1992-06-01 实施

发布

国家技术监督局国家环境保护局

#### 中华人民共和国国家标准

# 制定地方大气污染物排放标准的技术方法

GB/T 3840 — 1991

Technical methods for making local emission standards of air pollutants

#### 1 主题内容与适用范围

本标准规定了地方大气污染物排放标准的制定方法。本标准适用于指导各省、自治区、直辖市及所辖地区制定大气污染物排放标准。

#### 2 引用标准

GB 3095 大气环境质量标准

GB 9137 保护农作物的大气污染物最高允许浓度

TJ 36 工业企业设计卫生标准

- 3 总则
- 3.1 本标准为贯彻《中华人民共和国环境保护法》、《中华人民共和国大气污染防治法》而制定。
- 3.2 本标准是指导制定和修订地方大气污染物排放标准的方法标准。
- 3.3 本标准以大气质量标准为控制目标,在大气污染物扩散稀释规律的基础上,使用控制区(定义见 4.1条)排放总量允许限值和点源排放允许限值控制大气污染的方法制定地方大气污染物排放标准。此
- 4.1 余) 排放总量允许限值和点源排放允许限值控制人飞污染的方法制定地方人飞污染物排放标准。此外,各地还可结合当地技术经济条件,应用最佳可行和最佳实用技术方法或其他总量控制方法制定地方大气污染物排放标准。
- 3.4 全国各省、自治区、直辖市制定的大气污染物排放标准中已列入项目的污染物排放允许限值,不得宽于本标准方法计算的排放限值和国家有关的大气污染物排放标准限值。
- 免于本标准方法计算的排放限值和国家有关的人气污染物排放标准限值。 3.5 本标准各条规定在一般条件下具有同等效力,但对同一污染源标准中各条所确定的允许排放限值
- 不一致时,应以其中最小允许排放限值为准。 3.6 附录中各条规定供使用本标准时参考。
- 4 气态大气污染物排放总量控制区及大气环境功能分区
- 4.1 气态大气污染物排放总量控制区(以下简称总量控制区)是当地人民政府根据城镇规划、经济发展与环境保护要求而决定对大气污染物排放实行总量控制的区域。总量控制区以外的区域称非总量控制区,例如广大农村以及工业化水平低的边远荒僻地区。但对大面积酸雨危害地区应尽量设置 SO<sub>2</sub> 和
- NO<sub>x</sub> 排放总量控制区。
- 4.2 大气环境功能区是因其区域社会功能不同而对环境保护提出不同要求的地区,功能区数目不限,但应由当地人民政府根据国家有关规定及城乡总体规划分为一、二和三类与 GB 3095 中三类大气质量

区相对应,即:

国家环境保护局 1991 - 08 - 31 批准

#### 传播先进的环境技术和理念为改善中国的环境而努力环境技术论坛;http://bbs.cnjlc.com

- 一类区:为国家规定的自然保护区、风景名胜、疗养地等。
- 二类区:为城市规划中确定的居民区、商业交通居民混合区、文化区,名胜古迹和广大农村等。
- 三类区:为大气污染程度比较重的城镇和工业区以及城市交通枢纽、干线等。
- 一、二、三类功能区分别执行 GB 3095 所规定的一、二、三级大气质量标准。
- 4.3 总量控制区及非总量控制区均可按 4.2 条进行功能区的划分。
- 4.4 本标准中各功能分区内大气污染物浓度限值均按 GB 3095 确定,对该标准未规定浓度限值的污 染物,则按 TI 36 中有关居住区容许浓度限值确定:农作物保护区按 GB 9137 所规定的浓度限值确定。
- 5 燃料燃烧过程产生的气态大气污染物排放标准的制定方法

燃料燃烧过程产生的气态大气污染物系指各种生产能源的设备燃烧各种矿物燃料产生的大气污染 物,如飘尘、二氧化硫、氮氧化物和一氧化碳,本章内简称大气污染物。

- 5.1 总量控制区内大气污染物排放总量限值的计算方法
- 5.1.1 总量控制区污染物排放总量的限值由式(1)计算:

$$Q_{ak} = \sum_{i=1}^{n} Q_{aki} \qquad \cdots \qquad (1)$$

式中:  $Q_{ak}$  —— 总量控制区某种污染物年允许排放总量限值, $10^4$ t;

 $Q_{aki}$  —— 第 i 功能区某种污染物年允许排放总量限值, $10^4$ t;

n——功能区总数;

 $i \longrightarrow$  总量控制区内各功能分区的编号;

a——总量下标:

k——某种污染物下标。

5.1.2 各功能区污染物排放总量限值由式(2)计算:

$$Q_{aki} = A_{ki} \frac{S_i}{\sqrt{S}} \qquad \cdots \qquad (2)$$

$$S = \sum_{i=1}^{n} S_{i} \cdots (3)$$

式中: Qaki —— 见 5.1.1 定义; S ——总量控制区总面积, $km^2$ ;

-第i功能区面积 $,km^2;$ 

 $A_{i,i}$  —— 第 i 功能区某种污染物排放总量控制系数, $10^4$ t • a $^{-1}$  • km $^{-1}$ ,计算方法见 5. 1. 3。

5.1.3 各类功能区内某种污染物排放总量控制系数  $A_{ki}$  由式(4)计算:

$$A_{\mathbf{k}i} = AC_{\mathbf{k}i}$$
 ..... (4)

式中:  $A_{ki}$  —— 见 5.1.2 定义;

 $C_{ki}$  ——GB 3095 等国家和地方有关大气环境质量标准所规定的与第i 功能区类别相应的年日平 均浓度限值,mg·m<sub>N</sub><sup>-3</sup>;

 $A \longrightarrow$  地理区域性总量控制系数, $10^4 \cdot \text{km}^2 \cdot \text{a}^{-1}$ ,可参照表 1 所列数据选取。 $A_{ki}$  亦可按附录 A2 方法求取,或经环境大气质量评价和预测研究后确定。

5. 1. 4 总量控制区内低架源(几何高度低于 30 m 的排气筒排放或无组织排放源)大气污染物年排放 总量限值由式(5)计算:

$$Q_{bk} = \sum_{i=1}^{n} Q_{bki} \quad \cdots \qquad (5)$$

式中:  $Q_{bk}$  —— 总量控制区内某种污染物低架源年允许排放总量限值, $10^4$ t;

#### 传播先进的环境技术和理念为改善中国

 $Q_{bki}$  —— 第 i 功能区低架源某种污染物年允许排放总量限值, $10^4$ t,其计算方法见 5. 1. 5:

b——低架源排放总量下标。

5.1.5 各功能区低架源污染物排放总量限值按式(6)计算。

式中:  $Q_{bk}$  —— 见 5. 1. 4 定义;

 $Q_{aki}$  — 见5.1.1 定义;

 $\alpha$ ——低架源排放分担率,见表 1。

表 1 我国各地区总量控制系数 A、低源分担率  $\alpha$ 、点源控制系数 P 值表

| 11b 15-7 |                                     |         |      | P         |            |  |
|----------|-------------------------------------|---------|------|-----------|------------|--|
| 地区<br>序号 | 省(市)名                               | A       | α    | 总量<br>控制区 | 非总量<br>控制区 |  |
| 1        | 新疆、西藏、青海                            | 7.0~8.4 | 0.15 | 100~150   | 100~200    |  |
| 2        | 黑龙江、吉林、辽宁、内蒙古(阴山以北)                 | 5.6~7.0 | 0.25 | 120~180   | 120~240    |  |
| 3        | 北京、天津、河北、河南、山东                      | 4.2~5.6 | 0.15 | 100~180   | 120~240    |  |
| 4        | 内蒙古(阴山以南)、山西、陕西(秦岭以北)、宁夏、甘肃(渭河以北)   | 3.5~4.9 | 0.20 | 100~150   | 100~200    |  |
| 5        | 上海、广东、广西、湖南、湖北、江苏、浙江、安徽、海南、台湾、福建、江西 | 3.5~4.9 | 0.25 | 50~100    | 50~150     |  |
| 6        | 云南、贵州、四川、甘肃(渭河以南),陕西(秦岭以南)          | 2.8~4.2 | 0.15 | 50~75     | 50~100     |  |
| 7        | 静风区(年平均风速小于 1 m/s)                  | 1.4~2.8 | 0.25 | 40~80     | 40~90      |  |

5.1.6 总量控制区内点源(几何高度大于等于 30 m 的排气筒)污染物排放率限值由式(7)计算:

式中: 
$$Q_{nk}$$
 — 第  $i$  功能区内某种污染物点源允许排放率限值,  $t \cdot h^{-1}$ ;

-第i功能区内某种污染物点源排放控制系数 $_i$ t・ $\mathrm{h}^{-1}$ ・ $\mathrm{m}^{-2}$ ,计算方法见 $_i$ 5. $_i$ 1. $_i$ 7;

 $H_{\circ}$  — 排气筒有效高度, m, 计算方法见 5.1.11。

5.1.7 点源排放控制系数按式(8)计算:

$$P_{ki} = \beta_{ki} \times \beta_k \times P \times C_{ki} \qquad \cdots \qquad (8)$$

式中: P<sub>ki</sub> ——见 5.1.6 定义;

$$\beta_{ki}$$
 —— 第  $i$  功能区某种污染物的点源调整系数,计算方法见  $5.1.8$ ;

-总量控制区内某种污染物的点源调整系数,计算方法见 5.1.9;

一见5.1.3 定义,但使用日平均浓度限值,mg·m灬;

 $P \longrightarrow$ 地理区域性点源排放控制系数,见表 1。

5.1.8 各功能区点源调整系数按式(9)计算:

式中: 
$$\beta_{ki}$$
 —— 见 5. 1. 7 定义,若  $\beta_{ki} > 1$  则取  $\beta_{ki} = 1$ ;

筒)年允许排放的总量,10<sup>4</sup> t。

 $Q_{aki}$  —— 见5.1.2 定义;  $Q_{\rm bki}$  —

— 见5.1.4 定义;

 $Q_{mki}$  —— 第 i 功能区内某种污染物所有中架点源(几何高度大于或等于 30 m、小于 100 m 的排气

5.1.9 总量控制区点源调整系数按式(10)计算:

 $eta_{
m k} = (Q_{
m ak} - Q_{
m bk})/(Q_{
m mk} + Q_{
m ek})$ 

#### 传播先进的环境技术和理念为改善中国的环境而努力环境技术论坛;http://bbs.cnilc.com

式中:  $\beta_k$  — 见 5. 1. 7 定义,若  $\beta_k > 1$  则取  $\beta_k = 1$ ;

 $Q_{ak}$  —— 见5.1.1 定义;

 $Q_{hk}$  —— 见5.1.4 定义;

 $Q_{mk}$  —— 总量控制区内某种污染物所有中架点源(见 5.1.8 定义)年允许排放的总量, $10^4$  t;

 $Q_{\rm ek}$  —— 总量控制区内某种污染物所有高架点源(几何高度大于或等于  $100~{
m m}$  的排气筒)年允许排放的总量, $10^4~{
m t}$ 。

5. 1. 10 实际排放总量超出限值后的削减原则是尽量削减低架源总量  $Q_{\rm bk}$  及  $Q_{\rm bki}$  使得  $\beta_{\rm k}$  和  $\beta_{\rm ki}$  接近或等于 1,然后再按 5. 1. 7 的方法计算点源排放控制系数  $P_{\rm ki}$  。

5.1.11 排气筒有效高度 *H*。按式(11)计算:

$$H_{\circ} = H + \Delta H$$
 ......(11)

式中:H ——排气筒距地面几何高度,m。超过 240~m 时则取 H = 240~m;

$$\Delta H$$
 ——烟气抬升高度, $\mathbf{m}$ 。计算公式见式(12)、(17)、(18)和(19)。

5. 1. 11. 1 当烟气热释放率  $Q_h$  大于或等于 2 100 kJ·s<sup>-1</sup>且烟气温度与环境温度的差值  $\Delta T$  大于或等于 35 K 时, $\Delta H$  使用式(12)计算:

$$\Delta H = n_0 \times Q_{\rm h}^{n_1} \times H^{n_2} \times V_{\rm a}^{-1} \quad \cdots \qquad (12)$$

$$\Delta T = T_{s} - T_{s} \qquad \cdots \qquad (14)$$

式中:  $n_0$  — 烟气热状况及地表状况系数,见表 2;

 $n_1$  ——烟气热释放率指数,见表 2;

 $n_2$  ——烟筒高度指数,见表 2;

 $Q_h$  ——烟气热释放率, $kJ \cdot s^{-1}$ ;

 $H \longrightarrow \mathbb{Q}_5.1.11$  定义;

 $P_a$  — 大气压力, hPa, 取邻近气象站年平均值;

 $Q_{v}$  ——实际排烟率, $m^{3} \cdot s^{-1}$ ;

 $\Delta T$  ——烟气出口温度与环境温度差,K:

 $T_{\rm s}$  ——烟气出口温度,K;

 $T_a$  — 环境大气温度, K, 取排气筒所在市(县)邻近气象台(站)最近 5 年平均气温;

V<sub>a</sub> ——烟囱出口处环境平均风速,m/s。以排气筒所在市(县)邻近气象台(站)最近 5 年平均风

速,按幂指数关系换算到烟囱出口高度的平均风速

式中: $V_1$  ——邻近气象台(站) $Z_1$  高度五年平均风速, $\mathbf{m} \cdot \mathbf{s}^{-1}$ ;

 $Z_1$  ——相应气象台(站)测风仪所在的高度,m;

 $Z_2$  ——烟囱出口处高度(与 $Z_1$  有相同高度基准),m;

*m* ——**见表** 3。

#### 传播先进的环境技术和理念为改善中国的环境而努力环境技术论坛:http://bbs.cnilc.co

#### 表 $2 n_0, n_1, n_2$ 的选取

| $Q_{\rm h}$ , kJ • s <sup>-1</sup> | 地表状况(平原) | $n_0$ | $n_1$ | $n_2$ |
|------------------------------------|----------|-------|-------|-------|
| 0 >21 000                          | 农村或城市远郊区 | 1.427 | 1/3   | 2/3   |
| $Q_{ m h}\geqslant$ 21 000         | 城区及近郊区   | 1.303 | 1/3   | 2/3   |
| 2 100≪ Q <sub>h</sub> <21 000 且    | 农村或城市远郊区 | 0.332 | 3/5   | 2/5   |
| $\Delta T \geqslant 35 \text{ K}$  | 城区及近郊区   | 0.292 | 3/5   | 2/5   |

#### 表 3 各种稳定度条件下的风廓线幂指数值 m

| 加 稳定度类别 地区 | A    | В    | С    | D    | EF   |
|------------|------|------|------|------|------|
| 城市         | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 |
|            | 0.07 | 0.07 | 0.10 | 0.15 | 0.25 |

5.1.11.2 当 1 700 kJ·s $^{-1}$ <  $Q_h$  <2 100 kJ·s $^{-1}$ 时,烟气抬升高度按式(17)计算:

式中:  $\Delta H \longrightarrow \mathbb{Q}$  5. 1. 11 定义,m;

$$\Delta H_1 = 2 \times (1.5 V_{\rm s} \times D + 0.01 Q_{\rm h}) / V_{\rm a} - 0.048 \times (Q_{\rm h} - 1700) / V_{\rm a}$$
 ,m;

 $V_{\rm s}$  ——排气筒出口处烟气排出速度 $_{
m ,m/s}$ ; D ——排气筒出口直径 $_{
m ,m}$ ;

Q<sub>b</sub> — 见5.1.11.1 定义;

V。──见5.1.11.1 定义;

 $\Delta H_2$  — 按式(12)所计算的抬升高度。

5. 1. 11. 3 当  $Q_h \leq 1700 \text{ kJ} \cdot \text{s}^{-1}$ 或者  $\Delta T < 35 \text{ K}$ ,烟气抬升高度按式(18)计算:

 $\Delta H = 0.57 (1.5 \text{ W}) \times D + 0.01 (0.5) \text{W}$ 

式中:  $\Delta H \longrightarrow \mathbb{Q}$  5.1.11 定义;

D —— 见5.1.11.2 定义;

 $Q_{\rm h}$  ——见5. 1. 11. 1 定义;

\_\_\_\_\_

 $V_{\scriptscriptstyle \rm a}$  —— 见5.1.11.1 定义。

5. 1. 11. 4 凡地面以上  $10~\mathrm{m}$  高处年平均风速  $V_\mathrm{a}$  小于或等于  $1.5~\mathrm{m/s}$  的地区使用式 (19) 计算抬升高度 :

$$\Delta H = 5.50 Q_{\rm h}^{1/4} \times \left(\frac{{\rm d}T_{\rm a}}{{\rm d}Z} + 0.009 8\right)^{-3/8}$$
 .....(19)

式中: $\frac{\mathrm{d}T_a}{\mathrm{d}Z}$  ——排放源高度以上环境温度垂直变化率, $\mathrm{K/m}$ 。取值不得小于  $0.01\mathrm{K/m}$ 。

5.1.12 点源大气污染物排放浓度(1 h 平均)限值按式(20)计算:

 $\mathrm{mg} \, ullet \, \mathrm{m}_\mathrm{N}^{-3} \, ;$   $Q_{\mathrm{pk}i} = - \, \mathbf{D} \, 5. \, 1. \, 6 \, \mathbf{定义} \, ;$ 

$$Q_v$$
 —— 见 5. 1. 11. 1 定义,在式(20)中应使用 1 小时平均值并将单位折算为  $m_N^3 \cdot s^{-1}$ 。

5.2 总量控制区二氧化硫排放标准制定方法

#### 传播先进的环境技术和理念为改善中国的环境而努力环境技术论坛; http://bbs.cn.jlc.com

- 5.2.1 二氧化硫排放率超过 14 kg/h 的排气筒高度必须超过 30 m。
- 5. 2. 2 二氧化硫年允许排放总量限值按 5. 1.  $1 \sim 5$ . 1. 5 计算,其中  $C_{kk}$  [见式(4)]使用 GB 3095 相应的
- 日平均浓度标准限值作实施值,取相应等级的年日平均浓度标准限值作目标值。 5. 2. 3 二氧化硫点源排放量限值按 5. 1.  $6 \sim 5$ . 1. 9 计算,其中  $C_{ki}$  [见式(8)]使用 GB 3095 相应的日平
- 5.2.4 采暖期二氧化硫排放总量限值应以式(21)计算:

$$Q_{\text{wai}} = \alpha_{\text{s}} \times \frac{M}{12} \times Q_{\text{ai}} \quad \cdots \qquad (21)$$

式中:  $Q_{wai}$  — 第 i 功能区采暖期二氧化硫允许排放总量, $10^4$  t;

均浓度标准限值。

 $\alpha_s$  ——二氧化硫总量季节调整系数,0.6  $\leqslant \alpha_s \leqslant 1.5$ ,并以  $\alpha_s = 0.6$  作为目标值;

 $Q_{ii}$  — 第 i 功能区二氧化硫年允许排放总量, $10^4$  t.

- 5. 2. 5 采暖期低架源二氧化硫排放总量限值应以式(22)计算:

$$Q_{\text{wb}i} = \alpha_{\text{b}} \times \frac{M}{12} \times Q_{\text{b}i} \qquad \qquad \cdots$$
 (22)

式中:  $Q_{wbi}$  — 第 i 功能区采暖期低架源二氧化硫允许排放总量, $10^4$  t;

一见5.2.4 定义;

 $lpha_b$  ——二氧化硫低架源季节调整系数, $0.6 \leqslant lpha_b \leqslant 1.5$ ,并以  $lpha_b = 0.6$  作为目标值;

 $Q_{ij}$  — 第 i 功能区二氧化硫低架源年允许排放总量, $10^4$  t.

- 5.3 总量控制区氮氧化物排放标准的制定方法
- 5.3.1 氮氧化物排放率超过 9 kg/h 的排气筒高度必须超过 30 m。
- 5. 3. 2 氮氧化物年允许排放总量限值按 5. 1.  $1 \sim 5$ . 1. 5 计算,其中  $C_{ki}$  〔见式(4)〕使用 GB 3095 相应的
- 日平均浓度标准限值的 0.4 倍。
- 5. 3. 3 氮氧化物点源排放率限值按 5. 1.  $6\sim5$ . 1. 9 计算,其中  $C_{ki}$  [见式(8)]使用 GB 3095 相应的日平 均浓度标准限值。
- 5.3.4 以交通工具为主要氮氧化物排放源的地方,低架源排放分担率α可以取为表1列举值的2倍。
- 5.4 总量控制区一氧化碳排放标准的制定方法
- 5.4.1 一氧化碳排放率超过 180 kg/h 的排气筒高度必须超过 30 m。
- 5. 4. 2 一氧化碳年允许排放总量限值按 5. 1.  $1 \sim 5$ . 1. 5 计算,其中  $C_{ki}$  [见式(4)]使用 GB 3095 相应的
- 日平均浓度标准限值的 0.4 倍。
- 5.4.3 一氧化碳点源排放量限值按 5.1.6 $\sim$ 5.1.9 计算,其中  $C_{ki}$  [见式(8)]使用 GB 3095 相应的日平 均浓度标准限值。
- 5.4.4 以交通工具为主要一氧化碳排放源的地方低架源排放分担率 α 可以取为表 1 列举值的 2 倍。
- 5.5 总量控制区各污染源的设置
- 5.5.1 在总量控制区按  $5.1.1\sim5.1.5$  所计算的各类允许排放总量限值减去各原有源实际排放总量后 若有足够余额,则可建立相应的新排放源。否则将新源排放量加入原来实际排放总量后按 5.1.10 原则

对各源削减以满足总量控制要求。

- 5.5.2 由于建立热电厂而削减了的其他源的排放量份额,在满足总量控制的要求下,应划归热电厂使
- 用。这时应该按  $5.1.7\sim5.1.9$  重新计算热电厂所在功能区的  $P_{ki}$  值以确定该厂允许排放率。
- 5.5.3 若排气筒处于不同功能区的边界附近,则按下列情况分别采用  $P_{k}$  值(见 5.1.6)。
- 5.5.3.1 若排气筒距边界在  $10 H_e$  范围内,那么计算该排气筒排放量时应采用邻近功能区最小的  $P_{e}$ 值。
- 5.5.3.2 若排气筒距边界在  $25\sim10~H_e$  范围内,而排气筒又在  $P_{k}$  较大的功能区内则取与相邻功能区

#### 传播先进的环境技术和理念为改善中国的环境而努力环境技术论坛;http://bbs.cnjlc.com

 $P_{\mathbf{k}i}$  的平均值作为该排气筒的排放系数 ; 如果排气筒在  $P_{\mathbf{k}i}$  值较小的功能区则取所在功能区的  $P_{\mathbf{k}i}$  值 。

- 5.5.3.3 若排气筒距边界在  $25~H_{\odot}$  以远,那么就取排气筒所在功能区的  $P_{\odot}$  值。
- 5. 5. 3. 4 在(1,2) 类或 (2,3) 类)功能区边界 (2,3) 功能区边界 (2,3) 的功能区内。
- 5.5.4 各功能区按各点源排气筒实际排放的污染物数量、行业性质及最佳可行和最佳实用技术分析所
- 5.6 新建、改建和扩建工程的排气筒应符合以下规定

确定的允许排放量不得大于 5.1.6 所计算出的允许排放限值。

5. 6. 1 排气筒出口处烟气速度  $V_s$  不得小于按式(23)计算出的风速  $V_s$  的 1. 5 倍。

$$V_{\rm c} = \overline{V} \times (2.303)^{1/K} / \Gamma \left( 1 + \frac{1}{K} \right)$$

式中 $: \overline{V}$  ——排气筒出口高度处环境风速的多年平均风速 $, m \cdot s^{-1};$ 

K ——韦伯斜率;

$$\Gamma(\lambda)$$
 —  $\Gamma$ 函数,  $\lambda = 1 + \frac{1}{K}$  (见附录 C)。

- 5.6.2 工矿企业点源排气筒高度不得低于它所从属建筑物高度的2倍,并且不得直接污染邻近建筑物。
- 5. 6. 3 若由 5. 1. 11 计算出的排气简几何高度为  $H_0$ ,在排气简四周存在居住、工作等需要保护的建筑 群,其平均高度为  $H_0$ ,那么排气简的实际高度应设计为:

$$H = H_0 + \frac{2}{3}H_c$$
 .....(25)

- 5.7 关于排气筒组的一些规定
- 5.7.1 若干邻近的排气筒(以下简称排气筒组),其中最远的两个排气筒之间的距离不超过该组中最大排气筒高度时,则该排气筒组的允许排放量按一个排气筒计算,其高度按式(26)计算.

式中 $:\overline{H}_{e}$  ——排气筒组等效单源有效高度,m;

 $H_{ei}$  ——排气筒组中第i 个排气筒的有效高度 $, \mathrm{m}$ ;

N ——排气筒组中排气筒的个数。

5. 7. 2 排气筒组中最远的两个排气筒之间的距离超过该组中最大排气筒高度时,各排气筒在不稳定大气(见附录 B1 定义)中落地浓度叠加值不得超过由式(27)所计算出的数值 C 。

式中: C —— 各排气筒最大落地浓度叠加值的限值, $mg \cdot m_N^{-3}$ ;

 $r \longrightarrow GB$  3095 中的二级标准的一次浓度限值与日平均浓度限值比,对二氧化硫为 3.3、氮氧化物为 1.5、一氧化碳为 2.5:

 $P_{ki}$  ——该排气筒组应使用的某种污染物的点源排放控制系数,见 5.1.7 定义;

 $P \longrightarrow$  当地的地理区域性点源控制系数,见 5.1.7 定义。

- 5.8 非总量控制区污染物排放量限值计算方法
- 5.8.1 该区内暂不对污染物排放进行总量控制。
- 5.8.2 该区内点源污染物排放限值的计算方法及规定同于 5.1、5.5、5、6、5.7 条中所有有关点源排放

的条款,但点源排放控制系数计算式(8)中的调整系数  $\beta_k$  及  $\beta_{ki}$  均取 1 , P 值在表 1 中非总量控制区栏中选取。  $C_{ki}$  值则按点源所在功能区或农作物保护区的类别执行 GB 3095 中规定的相应级别的浓度标准

或 GB 9137 规定的相应作物日平均浓度限值标准。

6 生产工艺过程中产生的气态大气污染物排放标准的制定方法

生产工艺过程中产生的气态大气污染物系指各种非能源产品的生产过程中产生的大气污染物。

- 6.1 排放各种生产工艺过程中产生的气态大气污染物的排气筒,其高度一般不得低于 15 m。如因生产工艺等条件的限制,只能设置低于 15 m 的排气筒,该排气筒按无组织排放源对待。
- 6.2 单一排气筒(指以其高度为半径的范围内无排放同种大气污染物之其他排气筒者)允许排放率按式(28)确定。

式中: Q ——排气筒允许排放率, $kg \cdot h^{-1}$ ;

 $C_{\mathrm{m}}$  — 标准浓度限值, $\mathrm{mg} \cdot \mathrm{m_N}^{-3}$ ;

R ——排放系数;

 $K_a$  — 地区性经济技术系数,取值为 0.5~1.5。

- 6. 2. 1 标准浓度限值  $C_m$  取 GB 3095 规定的二级标准任何一次浓度限值  $(mg \cdot m_N^{-3})$ ;该标准未规定浓度限值的大气污染物,取 TJ 36 规定的居住区一次最高容许浓度限值  $(mg \cdot m_N^{-3})$ ,该标准只规定日平均容许浓度限值的大气污染物,一般可取其日平均容许浓度限值的三倍,但对于致癌物质,毒性可累积的物质,如苯、汞、铅等,则直接取其日平均容许浓度限值。
- 6.2.2 排放系数 R 根据排气筒所在地区类别,大气环境质量功能区类别及排气筒高度,从表 4 查取。排气筒高度在两档之间时,用内插法确定。

| 地区序号1)        |     |     | 1 2 3 4 5 |     |     | 6   |     |     | 7   |     |
|---------------|-----|-----|-----------|-----|-----|-----|-----|-----|-----|-----|
| 功能区分类         |     | 一类  | 二类        | 三类  | 一类  | 二类  | 三类  | 一类  | 二类  | 三类  |
|               | 15  | 3   | 6         | 9   | 2   | 4   | 6   | 1   | 2   | 3   |
|               | 20  | 6   | 12        | 18  | 4   | 8   | 12  | 2   | 4   | 6   |
|               | 30  | 16  | 32        | 48  | 12  | 24  | 36  | 6   | 12  | 18  |
|               | 40  | 29  | 58        | 87  | 21  | 42  | 63  | 11  | 22  | 33  |
| 排 气 筒<br>有效高度 | 50  | 45  | 90        | 135 | 33  | 65  | 97  | 17  | 34  | 51  |
| 有双同反<br>m     | 60  | 64  | 128       | 192 | 47  | 94  | 141 | 24  | 48  | 72  |
|               | 70  | 88  | 176       | 264 | 64  | 128 | 192 | 33  | 66  | 99  |
|               | 80  | 140 | 280       | 420 | 100 | 200 | 300 | 68  | 136 | 204 |
|               | 90  | 177 | 354       | 531 | 128 | 256 | 384 | 86  | 172 | 258 |
|               | 100 | 218 | 436       | 654 | 158 | 316 | 474 | 106 | 212 | 318 |

表 4 排放系数 R

注:1) 地区序号见表 1。

6.2.3 处于复杂气象、地形条件下的排气筒,其排放系数 R 可按式(29)计算:

式中:  $K \longrightarrow$  功能区调节系数,按一、二、三类分别取 0.17,0.33,0.50;

 $V_a$  ——排气口高度上的风速(见 5.1.11.1), $m \cdot s^{-1}$ ;

H。——排气筒有效源高,m。用本标准 5.1.11 所述方法确定。

6.3 单一排气筒(定义同 6.2条)出口处允许排放浓度限值按式(30)计算:

$$C = \frac{Q}{Q} \times 10^6 \qquad \dots$$
 (30)

式中 $: C \longrightarrow 排气筒出口处允许排放浓度限值, mg \cdot m_N^{-3}$ :

Q — 见6.2 条定义, $kg \cdot h^{-1}$ ;

 $Q_{\text{N}}$  ——排气筒排气率, $\mathbf{m}_{\text{N}}^{3} \cdot \mathbf{h}^{-1}$ 。

- 6.4 排气筒组允许排放率确定方法:
- 6.4.1 当排气筒组中最远的两个排气筒之间的距离不超过该排气筒组中最高排气筒的高度时,该排气筒组作为一个等效排气筒对待,其高度按式(26)确定。
- 6.4.2 当排气筒组中最远的两个排气筒之间的距离超过该排气筒组中最高排气筒的高度时,按排气筒组各排气筒最大落地浓度之和不可超过有关大气环境质量标准确定允许排放率限值,见 6.2.1。
- 6.5 在总量控制区凡排放二氧化硫、氮氧化物和一氧化碳大气污染物的允许排放量按第5章方法确定。
- 7 有害气体无组织排放控制与工业企业卫生防护距离标准的制定方法
- 7.1 凡不通过排气筒或通过 15 m 高度以下排气筒的有害气体排放,均属无组织排放。工业企业应采用合理的生产工艺流程,加强生产管理与设备维护,最大限度地减少有害气体的无组织排放。
- 7. 2 无组织排放的有害气体进入呼吸带大气层时,其浓度如超过  ${
  m GB~3095}$  与  ${
  m TJ~36}$  规定的居住区容许
- 浓度限值,则无组织排放源所在的生产单元(生产区、车间或工段)与居住区之间应设置卫生防护距离。 7.3 卫生防护距离在 100 m 以内时,级差为 50 m;超过 100 m,但小于或等于 1000 m 时,级差为 100 m
- m;超过 1 000 m 以上,级差为 200 m。
- 7.4 各类工业、企业卫生防护距离按式(31)计算:

$$\frac{Q_{c}}{C_{m}} = \frac{1}{A} (BL^{C} + 0.25 r^{2})^{0.50} L^{D} \qquad \cdots \qquad (31)$$

式中: C<sub>m</sub> — 见 6.2 定义;

L —— 工业企业所需卫生防护距离,m;

r — 有害气体无组织排放源所在生产单元的等效半径, ${
m m}$ 。根据该生产单元占地面积 S  $({
m m}^2)$ 计算, $r=(S/\pi)^{0.5}$ ;

A、B、C、D ——卫生防护距离计算系数,无因次,根据工业企业所在地区近五年平均风速及工业企业大气污染源构成类别从表 5 查取。

 $Q_c$  ——工业企业有害气体无组织排放量可以达到的控制水平, $kg \cdot h^{-1}$ 。

#### 表 5 卫生防护距离计算系数

|              | 衣 5 卫生的扩起高计算系数 |     |                           |     |       |                                                                                 |        |       |           |     |  |
|--------------|----------------|-----|---------------------------|-----|-------|---------------------------------------------------------------------------------|--------|-------|-----------|-----|--|
|              | 工业企业所          |     | 卫生防护距离 $L$ , $\mathrm{m}$ |     |       |                                                                                 |        |       |           |     |  |
| <b>山笠</b> 罗勒 | 在地区近五          |     | <i>L</i> ≤1 000           |     | 1 0   | 00 <l\le 2<="" th=""><th>000</th><th></th><th>L &gt; 2 000</th><th></th></l\le> | 000    |       | L > 2 000 |     |  |
| 计算系数         | 年平均风速          |     |                           |     | 工业企业ス | 大气污染源                                                                           | 构成类别¹) |       |           |     |  |
| m/s          | m/s            | Ι   | II                        | III | I     | II                                                                              | III    | Ι     | II        | III |  |
|              | <2             | 400 | 400                       | 400 | 400   | 400                                                                             | 400    | 80    | 80        | 80  |  |
| A            | 2~4            | 700 | 470                       | 350 | 700   | 470                                                                             | 350    | 380   | 250       | 190 |  |
|              | >4             | 530 | 350                       | 260 | 530   | 350                                                                             | 260    | 290   | 190       | 140 |  |
| В            | <2             |     | 0.01                      |     | 0.015 |                                                                                 |        | 0.015 |           |     |  |
| В            | >2             |     | 0.021                     |     |       | 0.036                                                                           |        | 0.036 |           |     |  |
|              | <2             |     | 1.85                      |     |       | 1.79                                                                            |        |       | 1.79      |     |  |
| C            | >2             |     | 1.85                      |     |       | 1.77                                                                            |        | 1.77  |           |     |  |
|              | <2             |     | 0.78                      |     |       | 0.78                                                                            |        | 0.57  |           |     |  |
| <i>D</i>     | >2             |     | 0.84                      |     | 0.84  |                                                                                 |        | 0.76  |           |     |  |

注:1) 工业企业大气污染源构成分为三类:

- 工类, 与无组织排放源共存的排放同种有害气体的排气筒的排放量,大干标准规定的允许排放量的三分之一
- Ⅱ类:与无组织排放源共存的排放同种有害气体的排气筒的排放量,小干标准规定的允许排放量的三分之 一,或虽无排放同种大气污染物之排气筒共存,但无组织排放的有害物质的容许浓度指标是按急性反 应指标确定者。
- Ⅲ类:无排放同种有害物质的排气筒与无组织排放源共存,且无组织排放的有害物质的容许浓度是按慢性 反应指标确定者。
- Q。取同类企业中生产工艺流程合理,生产管理与设备维护处于先进水平的工业企业,在正常运行 时的无组织排放量。当按式(31)计算的L值在两级之间时,取偏宽的一级。
- 7.5 无组织排放多种有害气体的工业企业,按 $Q_{\alpha}/C_{\alpha}$ 的最大值计算其所需卫生防护距离;但当按两种 或两种以上的有害气体的  $Q_{\infty}/C_{\infty}$  值计算的卫生防护距离在同一级别时,该类工业企业的卫生防护距离 级别应提高一级。
- 7.6 地处复杂地形条件下的工业企业所需卫生防护距离,应由建设单位主管部门与建设项目所在省、 市、自治区的卫生与环境保护主管部门,根据环境影响评价报告书共同确定。
- 8 烟尘排放标准的制定方法
- 8.1 本章所指烟尘为火电厂烟尘、锅炉烟尘和生产性粉尘。
- 8.1.1 点源烟尘允许排放率由式(32)计算:

式中.  $Q_0$  ——烟尘允许排放率, $t \cdot h^{-1}$ ;

 $P_a \longrightarrow$  烟尘排放控制系数, $t \cdot h^{-1} \cdot m^{-2}$ ,按所在行政区及功能区查表 6;

 $H_{\rm e}$  — 见5.1.11。

表 6 点源烟尘 P。值表

| 地区序号1) | 一类功能区 | 二类功能区  | 三类功能区   |  |  |  |  |  |
|--------|-------|--------|---------|--|--|--|--|--|
| 1      | 5     | 15~20  | 25~50   |  |  |  |  |  |
| 2      | 6     | 18~25  | 30~50   |  |  |  |  |  |
| 3      | 6     | 15~25  | 30~50   |  |  |  |  |  |
| 4      | 5     | 15~20  | 25~50   |  |  |  |  |  |
| 5      | 2.5   | 7.5~15 | 12.5~38 |  |  |  |  |  |
| 6      | 2.5   | 7.5~10 | 12.5~25 |  |  |  |  |  |
| 7      | 2     | 6~9    | 10~23   |  |  |  |  |  |

注:1) 地区序号同表1。

8.1.2 除尘器出口处烟尘允许排放浓度按式(33)计算:

$$C_{\text{allow}} = \frac{\left(A^{\text{y}} + \frac{q_4 \times Q_{\text{DW}}^{\text{y}}}{33907}\right) \times \alpha_{\text{fh}} \times (1 - \eta_{\text{c}}) \times 4.186 \times 10^9}{((1.11 \ \alpha + 0.04) \times 1.06 + 0.124)Q_{\text{DW}}^{\text{y}}} \quad \dots (33)$$

式中:  $C_{\text{allow}}$  ——除尘器出口处烟尘允许排放浓度, $\text{mg} \cdot \text{m}_{\text{N}}^{-3}$ ;

 $A^{y}$  —— 燃料灰分:

 $Q_{\rm DW}^{\rm y}$  -

一机械不完全燃烧热损失,一般取3%; - 燃煤的低位发热量 ,kJ・kg<sup>-1</sup>;

锅炉排烟带出的飞灰的份额,见表 7:

## CD/T 20/10 1001 传播先进的环境技术和理念为改善中国的环境而努力环境技术论坛;http://bbs.cnjlc.com

 $\alpha$  — 过量空气系数,见表 7;

 $\eta_c$  ——除尘器的净化效率。

表 7  $\alpha$  和  $\alpha_{fh}$  的选取

| $lpha_{\mathrm{fh}}$ | 0.15~0.90 |
|----------------------|-----------|
| α                    | 1.50~1.80 |

8.1.3 除尘设备的净化效率  $\eta_c$  应按当地经济能力及技术可能性确定。

#### 附录A

复杂条件下大气污染物排放标准的制定方法 (补充件)

- 复杂地形(包括山区及水陆交界区)下制定大气污染物排放标准的方法
- 对当地污染源分布进行调查、建立污染源档案。
- A1.2 对当地气象条件进行勘查,如局地流场,风向频率,风、温垂直分布、稳定度的分布等。必要时应 做大气扩散试验或风洞模拟实验,确定大气扩散参数及其它有关参数。

A1.3 使用适合当地条件的大气污染物输送及扩散模式所预测的各计算点年均值浓度应不大干该点 所在功能区大气污染物国家年日平均浓度标准限值(无年日平均浓度限值则取日均浓度标准限值 0.4 倍),对 SO<sub>2</sub> 可暂用日平均浓度标准限值作近期控制目标值,同时用年日平均浓度标准限值作远期目标 值。

A1. 4 在污染物迁移过程中,若在  $t_c$  前后扩散参数发生变化。例如在  $t \leq t_c$  时  $\sigma(t) = \sigma_1(t)$ :而  $t > t_c$  时  $\sigma(t) = \sigma_{z}(t)$ ,那么从 t = 0 出发的烟羽扩散参数为

$$\sigma = \begin{cases} \sigma_1(t) & t \leq t_c \\ \sigma_2(t - t_c + t_v) & t > t_c \end{cases}$$
 ..... (A1)

其中 tx 满足

$$\sigma_1(t_c) = \sigma_2(t_v)$$
 ...... (A2)

$$\sigma = \begin{cases} r_1 t^{a_1} & t \leq t_c \\ r_2 (t - t_c + t_v)^{a_2} & t > t_c \end{cases}$$
 ..... (A3)

$$t_{\rm v} = \left(\frac{r_1}{r_2}\right)^{1/a_2} \cdot t_{\rm c}^{a_1/a_2}$$
 ······  $A4$ 

式 $(A1)\sim (A4)$ 对横向及垂直扩散参数都适用。如果用行程表达  $\sigma$  时,则可以污染物中心轨迹上的行程 代替上述行走时间 t 。

- A1.5 对于孤立山体(或其它障碍物),浓度计算可作如下修正:
- A1.5.1 在中性或不稳定天气条件下:

当地形高度  $h_{\scriptscriptstyle T}$  低于有效源高  $H_{\scriptscriptstyle e</sub>$ 时,则假定烟轴与地面的高度差等于( $H_{\scriptscriptstyle e}-h_{\scriptscriptstyle T}/2$ );当  $h_{\scriptscriptstyle T}$ 高于  $H_{\scriptscriptstyle e}$ 时,则假定两者的高度差等于初始有效源高的一半,即  $H_a/2$ 。

A1.5.2 在稳定天气条件下

当烟羽逼近山体时,烟羽以临界高度  $H_e$  为界分成两部分,临界高度以上部分的烟羽有足够的动能 爬越山体,而临界高度以下部分的烟羽则被迫绕山体而过。此临界高度  $H_e$  可由式(A5)定义:

$$\frac{1}{2}u^{2} = g \int_{H_{c}}^{H} \left( \frac{H - Z}{\theta} \right) \frac{\partial \theta}{\partial Z} dZ \qquad \qquad \dots$$
 (A5)

式中:  $u \longrightarrow H_a$  高度的风速,  $m \cdot s^{-1}$ ;

 $\theta \longrightarrow Z$  高度上大气位温,K:

H ——山体高度,m。

- A1.6 关于沿海厂址,应研究内边界层的出现频率,高度及演变。对于内边界层内的地面浓度估算公式 建议采用莱昂斯和柯尔公式,分阶段考虑污染物的输送和扩散。
- A.1. 6. 1 第一阶段为未受热力内边界层影响,烟羽始终在稳定层结内迁移,按常用的高架连续点源公 式计算,在此阶段内地面浓度一般可忽略不计。

#### 传播先进的环境技术和理念为改善中国的环境而努力环境技术论坛;http://bbs.cnjlc.com

**A1.** 6. 2 第二阶段从烟羽下边界(边界定义为轴浓度 1/10 的等浓度线)开始进入热力内边界层到全部进入为止,地面浓度可由式(A6)给出。

$$C(x,y,0) = \frac{Q}{\sqrt{2\pi}u_1\sigma_{\rm vi}L(x)} \exp\left(-\frac{y^2}{2\sigma_{\rm vi}^2}\right) \cdot \int_{-\infty}^{p} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{p^2}{2}\right) \mathrm{d}p \qquad \cdots \cdots (A6)$$

式中:  $u \longrightarrow$ 烟流中心轴线高度上的环境风速,m/s;

 $\sigma_{
m vf}$  ——发生漫烟时的横向扩散参数, ${
m m}$ , $\sigma_{
m vf}=\sigma_{
m y}(s,x)+H_{
m e}/8$ ;

 $\sigma_{x}(s,x)$  —— 原稳定层结的扩散参数,m;

 $H_e$  ——烟羽有效源高, m;

L(x) ——热力内边界层高度, $m_{\circ}$ 

$$P = [L(x) - H_s]/\sigma_s(s,x) \qquad \cdots \qquad (A7)$$

式中:  $\sigma_z(s,x)$  —— 原稳定层结的垂直扩散参数, $m_o$ 

烟羽下边界与热力内边界层交点对源的水平距离  $x_{\rm B}$ ,满足  $L(x_{\rm B})=H_{\rm e}-2.15\sigma_{\rm z}(s,x_{\rm B})$ 。

**A**1. 6. 3 第三阶段是污染物已全部进入热力内边界层以后的阶段,从  $x > x_E$  开始,污染物在铅直方向已达均匀分布,地面浓度估算公式如下:

式中: $x_{\rm E}$  ——烟羽上边界与热力内边界层交点对源的水平距离,满足  $L(x_{\rm E})=H_{\rm e}+2.15\sigma_{\rm z}(s,x_{\rm E})$ ,

$$x' = x - x_{\rm E} \left( 1 - \frac{\sigma_{\rm yf}(x_{\rm E})}{\sigma_{\rm u}(u, x_{\rm E})} \right);$$

 $\sigma_{\nu}(u,x)$  —— 陆地不稳定条件下的水平扩散参数。

A1.7 对已建厂、矿企业的大气污染物排放标准,采用比例控制法,即

$$Q = a \times \frac{C_0}{C} \times Q_0 \quad \dots \quad (A9)$$

式中: Q — 允许排放量, $t \cdot h^{-1}$ ;

 $Q_0$  — 某企业实际排放量, $t \cdot h^{-1}$ ;

 $C_0$  ——GB 3095 所规定的浓度限值, $mg \cdot m_N^{-3}$ ;

C ——最大落地浓度实测值, $mg \cdot m_N^{-3}$ ;

a ──系数,取为 0.7。

**A2** 特殊情况下,例如小风(风速小于或等于  $1 \text{ m} \cdot \text{s}^{-1}$ )多云雾多雨水地区,排放总量控制系数  $A_{ki}$  (5.1.3)的实测确定方法

$$A_{ki} = Q_{ei} \cdot \sqrt{S} \cdot C_{si} / (S_i \cdot C_{ei})$$
 ...... (A10)

式中:  $A_{ki}$  ——见(5.1.2)定义;

 $Q_{ij}$  —— 第 i 功能区内二氧化硫年实际排放总量, $10^4$  t;

 $C_{ei}$  —— 第 i 功能区内在大气中检测到的二氧化硫浓度的年日均值, $\mathrm{mg} \cdot \mathrm{m_N^{-3}};$ 

 $C_{si}$  ——GB 3095 中规定的相应二氧化硫年日平均浓度标准限值, $mg \cdot m_N^{-3}$ ;

S——总量控制区总面积, $km^2$ ;

 $S_i$  — 第 i 功能区面积, km<sup>2</sup>。

#### 附 录 B 大气稳定度等级的划分 (补充件)

**B1** 大气稳定度等级的划分是使用帕斯奎尔(Pasquill)稳定度分类法,分为强不稳定、不稳定、弱不稳定、中性、较稳定和稳定六级。它们分别由  $A \setminus B \setminus C \setminus D \setminus E$  和 F 表示。首先从式(B1)算出太阳倾角  $\delta$ :

 $\delta = (0.006\ 918 - 0.399\ 912\ \cos\theta_0 + 0.070\ 257\ \sin\theta_0 - 0.006\ 758\ \cos\ 2\ \theta_0 + 0.000\ 907\ \sin\ 2\ \theta_0$ 

式中:  $\theta_0 = 360 \ d_n/365$ , deg;

 $\delta$  — 太阳倾角, deg;

 $d_n$ ——一年中日期序数, $0,1,2,\dots,364$ 。

以式(B2)算出太阳高度角 h<sub>o</sub>:

$$h_0 = \arcsin(\sin\phi\sin\delta + \cos\phi\cos\delta\cos(15t + \lambda - 300))$$
 ...... (B2)

式中: h<sub>0</sub> ——太阳高度角,deg;

*ϕ* —— 当地纬度,deg;

t ——北京时间,h:

λ — 当地经度, deg。

再从表 B1 由太阳高度角 h<sub>0</sub> 和云量查出太阳辐射等级。

表 B1 太阳辐射等级

| N DI MITTER OF A |            |                                                 |                                                              |                                                        |                       |  |  |
|------------------|------------|-------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------|-----------------------|--|--|
| 总云量1)/低云量        | 夜 间        | $h_{\scriptscriptstyle 0}$                      |                                                              |                                                        |                       |  |  |
|                  |            | $h_{\scriptscriptstyle 0} \leqslant 15^{\circ}$ | $15^{\circ} < h_{\scriptscriptstyle 0} \leqslant 35^{\circ}$ | $35^{\circ} < h_{\scriptscriptstyle 0} \le 65^{\circ}$ | $h_{_0} > 65^{\circ}$ |  |  |
| €4/€4            | <b>-</b> 2 | -1                                              | +1                                                           | +2                                                     | +3                    |  |  |
| 5~7/≪4           | -1         | 0                                               | +1                                                           | +2                                                     | +3                    |  |  |
| ≥8/≤4            | -1         | 0                                               | 0                                                            | +1                                                     | +1                    |  |  |
| ≥5/5~7           | 0          | 0                                               | 0                                                            | 0                                                      | +1                    |  |  |
| ≥8/≥8            | 0          | 0                                               | 0                                                            | 0                                                      | 0                     |  |  |

注:1) 云量(全天空十分制)观测规则见中央气象局编定的《地面气象观测规范》第3.3节。

最后从表 B2 由地面风速和太阳辐射等级查出大气稳定度等级。

表 B2 大气稳定度的等级

| 地面风速1)              |     |     | 太阳辐 | 射 等 级 |    |    |
|---------------------|-----|-----|-----|-------|----|----|
| m • s <sup>-1</sup> | +3  | +2  | +1  | 0     | -1 | -2 |
| €1.9                | A   | A∼B | В   | D     | Е  | F  |
| 2~2.9               | A∼B | В   | С   | D     | Е  | F  |
| 3~4.9               | В   | В∼С | С   | D     | D  | Е  |
| 5~5.9               | С   | C∼D | D   | D     | D  | D  |
| ≥6                  | D   | D   | D   | D     | D  | D  |

注: 1)地面风速 $(m \cdot s^{-1})$ 系指离地面 10 m 高度处 10 分钟平均风速,如使用气象台(站)资料,其观测规则与中央气象局编定的 $(物 m \in S m)$ 规范)第八章相同。

附 录 C 风 的 特 性 (补充件)

C1 风速概率分布按下列公式:

$$P(V \leqslant V_c) = 1 - \exp\left(-\left(\frac{V_c}{C}\right)^K\right)$$
 .....(C1)

$$K = 0.74 + 0.19\overline{V}$$
 ...... (C2)

6

7

8

$$C = \overline{V}/\Gamma\Big(1+rac{1}{K}\Big)$$
 ……  
或等于指定阅读  $V$  的概率。

式中: $P(V \leq V_c)$  ——表示风速小于或等于指定风速  $V_c$  的概率; C —— 为模值:

○── 刃候狙;

 $\overline{V}$  ——为年平均风速, $m \cdot s^{-1}$ ; K ——斜率:

 $\Gamma(\lambda)$  —  $\Gamma$ 函数, $\lambda = 1 + \frac{1}{K}$  见表 C1。

1

表 
$$C1 - \Gamma(\lambda)$$
 函数值表

3

2

| 2.0     | 1.0000 | 004 3 | 008 6 | 013 1 | 017 6 | 022 2 | 026 9 | 031 6 | 036 5 | 041 5 |
|---------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1       | 046 5  | 051 6 | 056 8 | 062 1 | 067 5 | 073 0 | 078 6 | 084 2 | 090 0 | 095 9 |
| 2       | 101 8  | 107 8 | 114 0 | 120 2 | 126 6 | 133 0 | 139 5 | 146 2 | 152 9 | 159 8 |
| 3       | 166 7  | 173 8 | 180 9 | 188 2 | 195 6 | 203 1 | 210 7 | 218 4 | 226 2 | 234 1 |
| 4       | 242 2  | 250 3 | 258 6 | 267 0 | 275 6 | 284 2 | 293 0 | 301 9 | 310 9 | 320 1 |
| 5       | 329 3  | 338 8 | 348 3 | 358 0 | 367 8 | 377 7 | 387 8 | 398 1 | 408 4 | 419 0 |
| 6       | 429 6  | 440 4 | 451 4 | 462 5 | 473 8 | 485 2 | 496 8 | 508 5 | 520 4 | 532 5 |
| 7       | 544 7  | 557 1 | 569 6 | 582 4 | 595 3 | 608 4 | 621 6 | 635 1 | 648 7 | 662 5 |
| 8       | 676 5  | 690 7 | 705 1 | 719 6 | 734 4 | 749 4 | 764 6 | 779 9 | 795 5 | 811 3 |
| 9       | 827 4  | 843 6 | 860 0 | 876 7 | 893 6 | 910 8 | 928 1 | 945 7 | 963 6 | 981 7 |
| 14.00.0 |        |       |       |       |       |       |       |       |       |       |

按照以下公式可算出表中未列出的函数值:

$$\Gamma(\lambda + 1) = \lambda \Gamma(\lambda)$$

λ

#### 附录 D扩散参数 $(\sigma_y,\sigma_z)$ 的确定 (参考件)

- **D1** 平原地区农村及城市远郊区的扩散参数选取, $A \setminus B$  和 C 级稳定度由表 D1 和表 D2 直接查算。 $D \setminus E$  和 F 级稳定度则需向不稳定方向提半级后查算。
- **D**2 工业区或城区中点源的扩散参数选取,工业区 A 和 B 级不提级,C 级升到 B 级,D、E 和 F 级向不稳定方向提一级后,按表 D1 和表 D2 查算。
- D3 丘陵山区的农村或城市,其扩散参数选取方法同城市工业区。
- **D4** 大于 30 分钟取样时间,垂直扩散参数不变,横向扩散参数按式(D1)计算.

CD/T 20/10 1001 传播先进的环境技术和理念为改善中国的环境而努力环境技术论坛;http://bbs.cnjlc.com

$$\sigma_{\mathrm{yr}_2} = \sigma_{\mathrm{yr}_1} \left( \frac{ au_2}{ au_1} \right)^q$$
 ...... ( D1 )

式中:  $\sigma_{y\tau_1}$  ——取样时间为 $\tau_1$  时的横向扩散参数,m;

 $\sigma_{
m yr_2}$  ——取样时间为  $au_2$  时的横向扩散参数  ${
m ,m}$  ;

q — 时间稀释指数,见表 D3。

表 D1 横向扩散参数幂函数表达式系数值  $\sigma_{y}=\gamma_{1}x^{a_{1}}$ 

(取样时间 0.5 h)

| 稳定度      | $\alpha_1$    | $\gamma_{_1}$                           | 下风距离,m  |  |  |  |  |
|----------|---------------|-----------------------------------------|---------|--|--|--|--|
| Δ        | 0.901 074     | 0.425 809                               | 0~1 000 |  |  |  |  |
| Α        | 0.850 934     | 0.602 052                               | >1 000  |  |  |  |  |
| D        | 0.914 370     | 0.281 846                               | 0~1 000 |  |  |  |  |
| В        | 0.865 014     | 0.396 353                               | >1 000  |  |  |  |  |
| D C      | 0. 919 325    | 0.229 500                               | 0~1 000 |  |  |  |  |
| В—С      | 0.875 086     | 0.314 238                               | >1 000  |  |  |  |  |
| С        | 0. 924 279    | 0.177 154                               | 1~1 000 |  |  |  |  |
|          | 0.885 157     | 0. 232 123                              | >1 000  |  |  |  |  |
| C D      | 0. 926 849    | 0.143 940                               | 1~1 000 |  |  |  |  |
| C—D      | 0.886 940     | 0.189 396                               | >1 000  |  |  |  |  |
| D        | 0. 929 418    | 0.110 726                               | 1~1 000 |  |  |  |  |
| <i>D</i> | 0.888723      | 0.146 669                               | >1 000  |  |  |  |  |
| D—Е      | 0. 925 118    | 0.098 563 1                             | 1~1 000 |  |  |  |  |
| D-E      | 0.892 794     | 0.124 308                               | >1 000  |  |  |  |  |
| E        | 0. 920 818    | 0.086 400 1                             | 1~1 000 |  |  |  |  |
| <u></u>  | 0.896864      | 0.101 947                               | >1 000  |  |  |  |  |
| F        | 0. 929 418    | 0.055 363 4                             | 0~1 000 |  |  |  |  |
| <u>г</u> | 0.888723      | 0.073 334 8                             | >1 000  |  |  |  |  |
|          | 表 D2 垂直扩散参数幂函 | 函数表达式系数值 $\sigma_{ m z}=\gamma_{ m _2}$ |         |  |  |  |  |
|          | a a           | γ.,                                     | 下风距离.m  |  |  |  |  |

| 稳定度   | $lpha_2$  | $\boldsymbol{\gamma}_{\scriptscriptstyle 2}$ | 下风距离,m       |
|-------|-----------|----------------------------------------------|--------------|
|       | 1.121 54  | 0.079 990 4                                  | 0~300        |
| A     | 1.513 60  | 0.008 547 71                                 | 300~500      |
|       | 2.108 81  | 0.000 211 545                                | >500         |
| В     | 0.964 435 | 0.127 190                                    | 0~500        |
| Б     | 1.093 56  | 0.057 025                                    | >500         |
| D. C. | 0.941 015 | 0.114 682                                    | 0~500        |
| В—С   | 1.007 70  | 0.075 718 2                                  | >500         |
| С     | 0.917 595 | 0.106 803                                    | >0           |
|       | 0.838 628 | 0.126 152                                    | 0~2 000      |
| C—D   | 0.756 410 | 0.235 667                                    | 2 000~10 000 |
|       | 0.815 575 | 0.136 659                                    | >10 000      |
|       |           |                                              |              |

#### 续表 D2

| 稳定度 | $\boldsymbol{lpha}_2$ | $\gamma_{_2}$ | 下风距离,m       |  |
|-----|-----------------------|---------------|--------------|--|
|     | 0.826 212             | 0.104 634     | 1~1 000      |  |
| D   | 0.632 023             | 0.400 167     | 1 000~10 000 |  |
|     | 0.555 36              | 0.810 763     | >10 000      |  |
|     | 0.776 864             | 0.111 771     | 0~2 000      |  |
| D—E | 0.572 347             | 0.528 992 2   | 2 000~10 000 |  |
|     | 0.499 149             | 1.038 10      | >10 000      |  |
|     | 0.788 370             | 0.092 752 9   | 0~1 000      |  |
| E   | 0.565 188             | 0.433 384     | 1 000~10 000 |  |
|     | 0.414 743             | 1.732 41      | >10 000      |  |
| F   | 0.784 400             | 0.062 076 5   | 0~1 000      |  |
|     | 0.525 969             | 0.370 015     | 1 000~10 000 |  |
|     | 0.322 659             | 2.406 91      | >10 000      |  |

#### 表 D3 时间稀释指数 q

| 适用时间范围,h  | q    |  |  |
|-----------|------|--|--|
| 1≤ τ <100 | 0. 3 |  |  |
| 0.5≤ τ <1 | 0. 2 |  |  |

#### 附录 E

### 混合层及混合层条件下的污染物浓度计算

(参考件)

#### E1 混合层厚度的确定

在大气稳定度为 A、B、C 和 D 级时:

在大气稳定度为 E 和 F 级时:

$$f = 2 \Omega \sin \phi$$
 ..... (E3)

式中:  $L_b$  ——混合层厚度, m;

 $u_{10}$  — 10 m 高度上平均风速, $\mathbf{m} \cdot \mathbf{s}^{-1}$ ;大于  $6 \text{ m} \cdot \mathbf{s}^{-1}$ 时取为  $6 \text{ m} \cdot \mathbf{s}^{-1}$ ;

 $a_s,b_s$  ——混合层系数,见表 E1;

f — 地转参数;  $\Omega$  — 地转角速度,取为  $7.29 \times 10^{-5} \text{rad} \cdot \text{s}^{-1}$ ;

φ ── 地理纬度(°)。

| 表 E1 | 我国各地区 a | 和 6 値 |
|------|---------|-------|
|      |         |       |

| 地区序号             |   | 1     | 2     | 3     | 4     | 5     | 6     | 7     |
|------------------|---|-------|-------|-------|-------|-------|-------|-------|
| $a_{\rm s}$      | A | 0.090 | 0.073 | 0.073 | 0.073 | 0.056 | 0.073 | 0.090 |
|                  | В | 0.067 | 0.060 | 0.060 | 0.060 | 0.029 | 0.048 | 0.067 |
|                  | С | 0.041 | 0.041 | 0.041 | 0.041 | 0.020 | 0.031 | 0.041 |
|                  | D | 0.031 | 0.019 | 0.019 | 0.019 | 0.012 | 0.022 | 0.031 |
| $b_{\mathrm{s}}$ | Е |       |       |       | 1.66  |       | ,     |       |
|                  | F |       |       |       | 0.70  |       |       |       |

注:① 地区序号同表1。

- ② A、B、C、D、E 和 F 见附录 B1。
- E2 在大气混合层内的大气污染物地面浓度的计算,若 $H_{
  m e} \leqslant L_{
  m b}$ 并且 $\sigma_{
  m z} \leqslant 1$ .  $6~L_{
  m b}$ 则

$$C = \frac{Q}{\pi \sigma_{\text{u}} \sigma_{\text{e}} \overline{u}} \exp\left(-\frac{1}{2} \left(\frac{y}{\sigma_{\text{u}}}\right)^{2}\right) \sum_{k=1}^{k} \exp\left(-\frac{1}{2} \left(\frac{H_{\text{e}} + 2NL_{\text{b}}}{\sigma_{\text{e}}}\right)^{2}\right) \qquad \dots (E4)$$

若  $H_{\rm e} \leqslant L_{\rm b}$  并且  $\sigma_{\rm z} > 1.6 L_{\rm b}$ ,则

$$C = \frac{Q}{\sqrt{2\pi} \, \overline{u} \sigma \, L_{t}} \exp\left(-\frac{1}{2} \left(\frac{y}{\sigma_{y}}\right)^{2}\right) \qquad \qquad \cdots$$
 (E5)

若 $H_{\rm e} > L_{\rm b}$ 则

$$C = 0$$
 ..... (E6

式中:Q ——单位时间排放量 $, mg \cdot s^{-1};$ 

 $\sigma_{y}$  ——垂直于平均风向的水平横向扩散参数(见表  $\mathrm{D1}$ );

 $\sigma_z$  — 铅直方向扩散参数(见表 D2);

 $\overline{u}$  ——平均风速, $\mathbf{m} \cdot \mathbf{s}^{-1}$ ;

y ——垂直于平均风向的水平横向距离,m;

 $H_{\rm e}$  — 有效源高, ${
m m}$ ;

 $L_{\mathrm{b}}$  ——混合层厚度, $\mathrm{m}$ ;

式(E4)中的 k 值取为 4。

 ${f E3}$  孤立排气筒下风向  $30~{
m min}$  最大地面浓度  $C_{
m m}$  及最大浓度点距排气筒的距离按式(E7)、(E8)计算:

$$C_{\rm m} = \frac{Q\alpha^{\frac{\alpha}{2}}}{\pi \overline{u} r_1 r_2^{1-\alpha}} \cdot \frac{\exp\left(-\frac{\alpha}{2}\right)}{H_{\rm e}^a} \qquad \qquad (E7)$$

$$X_{\mathrm{m}} = \left(\frac{H_{\mathrm{e}}^2}{ar_{\mathrm{e}}^2}\right)^{\frac{1}{2a_2}}$$
 ..... (E8)

$$\alpha=1+lpha_{\scriptscriptstyle 1}/lpha_{\scriptscriptstyle 2}$$
 ..... E9 )

式中  $\alpha_1$ 、 $\alpha_2$ 、 $r_1$ 、 $r_2$  见表 D1、D2,其他符号同 E2。

E4 使用公式(E4)、(E5)、(E7)和(E8)时,即计算不同时段的大气污染物平均地面浓度、最大地面浓度和最大地面浓度落点距排气筒的水平距离,应使用相应时段平均的气象参数及源参数。

# CD/T 2040 1001 传播先进的环境技术和理念为改善中国的环境而努力环境技术论坛;http://bbs.cnjlc.com

附加说明:

本标准由国家环境保护局科技标准司标准处提出。

本标准由中国环境科学研究院、中国气象科学研究院、中国预防医学科学研究院、南京大学、中国辐 射防护研究院负责起草。

本标准由国家环境保护局负责解释。